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The binary number system Is the mos
are important. The decimal system

t important one in digital systems, but several others also
is important because it is universally used to represent
quantities outside a digital system. This means that there will be situations where decimal values
have to be converted to binary values before they are entered into the digital system. For
example, when you punch 2 decimal number into your hand calculator (or computer), the
circuitry inside the device converts the decimal number to a binary value.

alues at the outputs of a digital circuit have
to the outside world. For example, your
o a problem, then converts

Likewise, there will be situations where the binary v
to be converted to decimal values for presentation
calculator (or computer) uses binary numbers to calculate answers t
the answers to a decimal value before displaying them.

other number systems find widespread applications in
digital systems. The octal (base-8) and hexadecimal (base-16) number systems are both used for
the same purpose - to provide an efficient means for representing large binary numbers. As we
shall see, both these number systems have the advantage that they can be easily converted to and

In addition to binary and decimal, two

from binary.

In a digital system, three or four of these number systems may be in use at the same time, so that

an understanding of the system operation requires-the-ability to convert from one number system

to another.

BINARY-TO-DECIMAL CONVERSIONS

Thc? binary number system is a positional system where each binary digit (bit) carries a certain
weight based on its position relative to the binary point. Any binary number can be converted
to its decimal equivalent simply by summing together the weights of the various positions in the

binary number which contain a 1.
Example:
1 1 0 1 1 (binary)

2¢ 4+ 23 4+ 0 + 2t +2°=16 +8 +2 + 1
= 27 (decimal)

S Weights
11 0 1 1 Bits

16+8+2+1= 27



Dunwoody

IS #1
Another example with a greater number of bits.

1 0 1 1 0 1 0 1, =
27 + 2%+ 2f + 27 + 2° = 181,

Note that the procedure is to find the weights (i.e. powers of 2) for each bit position that
contains a 1, then add them up. :

For binary numbers, the rightmost digit is referred to as the least significant digit, or LSD,
because its positional value, or weight, is the lowest. The left-most digit is the most
significant digit, or MSD, because its positional value, or weight, is the highest.

Typical binary numbers are often written in groups of four or eight digits. Examples are
1001 and 10010110. Each digit, either 0 or 1, is referred to as a bit. A string of four bits
is called a nibble, and eight bits make a byte. 1001 is a nibble, and 10010110 is a byte.

EXERCISES:
1. Convert the binary number 10011 to its decimal equivalent.
2. Convert the binary number 1110011 to its decimal equivalent.

3. What is the weight of the MSB in the binary number 10000117

4. What is the weight of the MSB in a 10-bit binary number?

| RUE B A 8 gs¢ HIT

S A T $ g (4
5. Find the decimal equivalent of these binary numbers:
L= 11111746 +15 = 51
11 =2¢=3 111111 =32€31=G5%
111 = 4424127 1111111 = (4e67 127

1111 = P+44241505 11111111 =/24+1 277255

KEY: 1. 19 2. 115 3. 64 4. 512
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DECIMAL-TO-BINARY CONVERSIONS

A method to convert a number written in decimal to 2 number in binary is to use the powers of
2 chart. Use of the chart enables you to find the powers of 2 contained in the decimal number.

For example, convert the decimal number 153 to binary. The largest power of 2 in 153 is 128, 27,
Subtract this factor from the number and find the power of 2 contained in the difference.

153 - 128 = 25. 25 contains the factor 16, 2* and 25 - 16 = 9. 9 contains the factor 8, 2% and
9-8 =1 1is2° So the binary number contains 2/, 2%, 2% 2°. Starting from the most significant
place value, write the binary number with a digit of 1 for each place with a factor and a 0 to hold
the other places. The final answer: 10011001, = 153,,,.

153 128 64 32 16 8 4 2 1
- 128 1 0 0 1 1 0 0
25
~—16
9
- 8
1

EXERCISE: Convert the decimal number 86 to a binary number.

EXERCISE: Convert the decimal number 301 t0 a binary number.

1. 1010110 2. 100101101
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Alphanumeric data is data consisting of letters or numbers or both, such as words,
addresses, equations, and tables. Alphanumeric characters that are entered into a
computer from a keyboard are converted into unique binary patterns representing
each keyboard character. Several binary codes have been used throughout the
development of computers. One code is the ASCII (pronounced “AS-KEY”), which
stands for American Standard Code for Information Interchange. The computer
code ASCII uses three zone bits (more significant bits) and four numeric bits (least
significant bits), to code a character.

Zone bits Numeric bits

L R

For example, in ASCIL, E is coded as {00 0101. The zone bits are 0100 and the
numeric bits are 0101. A code of n bits contains 2" combinations of bits. An eight-
bit code such as ASCII can therefore accommodate 2% = 256 characters. This
includes the 10 digits, 26 letters, and characters such as *, #, % etc.

Partial Listing of ASCII Code
American Standard Code for Information Interchange

__Zone Bits
100

<
-
-
(o]
-

Hex Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
| 1010
1011
1100
1101
L1110
EEEE

Numeric
Bits
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DECIMAL-TO-BINARY CONVERSION

BY REMAINDER METHOD

A number expressed in the decimal system can be converted to binary by successive divisions
by 2. The remainder of each division is retained as a bit of the binary number, with the first

remainder as the least significant bit.

Convert the decimal number 39 to binary by the Remainder Method.

Example:

522 = 19 and remainder of !

1—29 = 9 and remainder of !

;)9- = 4 and remainder of !

% = 2 and remainder of 0

% = | and remainder of 0

1= 0 and remainder of 1

2

Therefore, 39 = 100111,

EXERCISE:
Using the Remainder Meéthod, convert the following decimal system numbers to their binary
equivalents.
1. 25
2. 54
3. 432
KEY: 1. 11001

2. 110110

3. 110110000
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BINARY-TO-DECIMAL CONVERSION BY
DOUBLE-DABBLE METHOD

A method of converting binary numbers to decimal equivalents (referred to as the double-dabble
or double-dibble method) is performed as follows.

Write a 1 over the | farthest left in the binary number to be converted. Moving to the right,
write a number over each bit according to this rule: If writing over a 0 bit, double the preceding
number. If writing over a 1 bit, double the preceding number and add 1. The number written

over the bit farthest right is the decimal equivalent being sought.
Convert the binary number 1000111 to decimal.

EXAMPLE:
1 2 4 8 17 35 71
1 0 0 0 1 1 1
Therefore, 1000111, = 71y
EXERCISE:

Using the double-dabble method, convert the following binary numbers to decimal equivalents.

I. 100001
2. 1100011
3. 101010101
4. 11110000
KEY: 1. 33

2. 99

3. 341

4, 240
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BINARY FRACTIONS

The value of a number is determined by the digits in the number, the base of the number system,
and the positions of the digits.

EXAMPLE: Binary 100 means "four".
Decimal 100 means "one hundred"

So-far, only integers have been considered; but the fractional portion of a number can also be
written in terms of the base raised to a power. Only here, the exponents are negative. Thus, we

have the following fractions:

10° 10? 10! 10° 107 107 107

1000 100 10 1 . 1/10 1/100 1/1000

23 22 2! 2° 2! 22 273
8 4 2 1 Yy Vi %
EXERCISE:

Name the value of the bits in the following binary numbers.

1 01 .001
.0001 .00001
KEY: 1. 172

2. 1/4

3. 1/8

4. /16

5. 1/32
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CONVERSION OF FRACTIONAL BINARY
NOTATION TO DECIMAL SYSTEM

Two methods of converting fractional binary fractions to decimal equivalents are described below.

Method 1:

A fractional binary number can be converted by adding the weights corresponding to the 1’s in
the binary number.

These values or weights are listed below:

70 12 24 1/16
22 = 1/4 23 = 1/32
2-3 = 1/8 etc.

Example: Convert the binary number .1101 to decimal.

12+ 125 +02°) + 1129

il

1101,

= .]; - l + l—
2 4 16
16 16 16
= %—g = 8125,

Method 2:

Move the binary point to the right of the least significant bit. Convert the resulting number to
decimal notation and then divide by 2%, where "x" is the number of places the binary point was

moved.

Example: Convert the binary number .1101 to decimal.

1101, = ML - L - L - g5,
2¢ 2* 16
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Exercises:

Dunwoody

Convert the following binary numbers to decimal.

2. .001

3. 1100

4. .0101

5. .00001

6. 10101

KEY: L. 5/8 =.625
2. /8 =.125
3. 3/4 =.750
4. 5/16 = .3125
5. 1/32 =.03125
6. 21/32 = 65625

10
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CONVERSION OF FRACTIONAL DECIMAL
NOTATION TO BINARY SYSTEM

Fractional quantities expressed in the decimal system can be converted to the binary system by
repeated multiplication by 2. In the result of each multiplication, the digits to the right of the
decimal point are used for the next multiplication. The digit to the left of the decimal point is
retained as one of the bits of the binary number being sought, the first bit so obtained being the

most significant bit.

Example: Convert the decimal number 0.625 to binary.

625 x2=1.250
250 x2=20.3500
500 x 2 =1.000

Therefore, 0.625,, = .101 ..

Using the method of repeated multiplication by 2, convert the following decimal system quantities
to their binary equivalents.

L. 125
2. 75

3. 3125

4. 0625

5. .8125

KEY: 1. .001

2. 11
| 3. 0101
S 4. .0001
5. 1101

11
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PARITY METHOD FOR ERROR DETECTION

The process of transferring data is subject to error, although modern equipment has
been designed to reduce the probability of error. However, even relatively
infrequent errors can cause useless results, so it is desirable to detect errors
whenever possible. A widely used method for detecting errors is the “parity

method”.

A parity bit is an extra bit that is attached to a code group that is being transferred
from one location to another. The parity bit is made either 0 or 1, depending on the
number of 1’s that are contained in the code group. Two different methods are

used.

In the even parity method, the value of the parity bit is chosen so that the total
number of 1’s in the group (including the parity bit) is an even number. For
example, suppose that the code group is 0100 1001. This is the ASCII character I.
The group has three 1’s. Therefore, a parity bit of 1 is added to make the total
number of 1’s an even number. The new code group, including the parity bit,
becomes: 10100 1001.

VI G

If the code group contains an even number of 1’s to start with, the parity bit is given
a value of 0. For example, if the group were 0100 1110, the ASCII code for N, the
parity bit would be 0, so the new code would be 0 0100 1110, which has four 1’s,

which is an even number of 1’s.

The odd parity method is used in the same way except that the parity bit is chosen
so the total number of 1’s, including the parity bit, is an odd number.

The parity bit is used to detect any single bit errors occurring in the transmission of
data. For example, if the letter C is being transmitted and odd parity is being used,
the transmitted code would be: 0 0100 0011. The receiver will check to see that the
code contains an odd number of bits. If the receiver receives the following code:
00100 0010, it will find that there is not an odd number of 1°s, and an error will be
detected, and the data can be transmitted again. The receiver can not identify
which bit is in error, for it does not know what the code is supposed to be.

This parity method will not work if two bits are in error, because two errors would
not change the “oddness” or “evenness” of the number of 1°’s in the code. In
practice, this parity method is used in situations where the probability of a single
error is low and the probability of double errors is practically zero.

12
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BINARY ARITHMETIC

Addition of Binary Numbers

Because the binary system employs only two symbols, addition is a simple process. Several
examples are shown below.

0 0 1 1
+0 +1 1 1
0 1 1 +1

1

Note that 1 plus 1 yields a sum of 0 and a carry of 1 into the next column, producing an
answer of 10 (this a binary 10, not a decimal 10). Similarly, 1 plus 1 plus 1 yields a sum of
! and a carry of 1 into the next column.

Binary numbers, like decimal numbers, are added column by column from right to left. The
radix point in binary arithmetic is handled the same way as it is handled in decimal
arithmetic. Addition requires that the radix point be aligned.

The most likely mistake that can be made in binary addition is losing track of the carries.
Carefully indicating each carry as it is propagated will lessen the possibility of such an error.

Example: 11 1

Exercise: Perform the following binary additions.
AR AN
1 1 0 1 0 3 1 0 1 1 0 0 1
+ 10 1 + 1 1 1 1 1 I 1
[l )10 L0 g
/ /Y A / I /
2. 1 1 1 1 1 1 4 1 1 0 1 1
/ 0 o 0 0 0 ¢ /10 b O, ( o
Key: 1. 1111 2. 1000000
3. 11011000 4. 1000.10

12
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IS #3 BINARY SUBTRACTION BY DIRECT METHOD

Because the binary system employs only two symbols, there are only four basic subtractions.

0 1 1 10
-0 -1 =0 1
0 0 1 1

Note that a borrow is required in the case “0 - 1”. This borrow is obtained from the
next higher-order column. Since a borrow brings a 1 into the column,
0—-1 becomes 10, - 1, or 2 -1 = 1.

Binary numbers are subtracted column by column, progressing from right to left.
The operation of subtraction requires that the binary points, or radix points, be

aligned.
Examples:
0 2 0 1 1 2
1 1 0 1 I 0 1 1 ¢ 06 0 1
- 0 T—0 90 =01 1 - —90
1 0 0 1 0 1 0 0 1 1 1 1
Exercise:
1 11 1 0 4, 1 0 1t 0 1
-1 0 1 O - 1 1 0
2 1 1 1 5 1 0 0 0 0
- 1 1
3. 11 0 1 1 6 1 0 1 1 I 1 0
-1 0 1 1 1 -1 0 0 0 0 1 1
Key: 1. 100 2. 110 3 100

4. 1111 5. 1111 6. 11.011
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The procedure for multiplying binary is essentially the same as that for decimal multiplication.
Each bit of the multiplier, starting with the least significant bit (bit farthest to the right), is
multiplied by the multiplicand. The partial products then are added to obtain the final

product.

There are only four possible multiplication facts to know.

0 0 1 1
x0 x1 x0 x1
0 0 0 1
Example: 1 0 0 1
X 1 0 1
1 0 0 1
0 0 0 O
1 0 0 1
I U 1 i U 1

The procedure for dividing binary numbers is also essentially the same as the decimal system

procedure.
Example: 1 1 1
1 1 0 /Fl o 1 0 1 0
1 0
1 0 0 1t
1 1 0
I 1
11
Exercise:
1. 111 2. 11.01
x _ 101 x 101
3. 100/10100 4. 10,01/1101.1
Key: 1. 100011 2. 1000.001
3. 101 4. 110
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THE BCD CODE

If each digit of a decimal number is represented by its binary equivalent, this produces a code
called binary-coded-decimal, abbreviated BCD. Since a decimal digit can be as large as 9, 4 bits

are required to code each digit.

Take a decimal number such as 363. Each digit is changed to its binary equivalent as follows:
5 6 3 (decimal)
0101 0110 0011 (BCD)

Each decimal digit is changed to its straight binary equivalent. Note that 4 bits are always used
for each digit. The BCD code represents each digit of the decimal number by a 4-bit binary

number. The BCD code does not use the numbers 1010, 1011, 1100, 1101, 1110, and 1111,
Only 10 of the possible 16 4-bit binary code groups are used.

Example: Convert the BCD number 100100010110 to decimal. Divide fhe BCD number
into 4-bit groups and convert each to decimal.

1001 0001 0110
9 1 6 , _
| BCD NUMERICAL REPRESENTATIONS |
[ Decimal I Binary T BCD
The BCD system is not another number system Lo 0 [ o
like binary, octal, hexadecimal. A BCD ’L 1 1 | o001 |
number is not the same as a straight binary L 2 10 | 0010 |
number. JL : . ’ ant |
L 4 100 ! 0100 ]
}; 5 101 ]] 0101 :
) 110 0110 i
E 7 m | o
8 1000 { 1000 |
L 1001 | 1001 |
Typical input applications for PLCs include the Output
entry of decimal data such as count, volume, and ! Module
weight. An example of a traditional input device : oooo
is the BCD thumbwheel switch. Each single-digit : S
thumbwheel has a internal wheel with the numbers 4
0 through 9. Internal to the thumbwheel is a series
of four switches, one each for the 8s, 4s, 2s and 1s
binary positions. Each switch is connected as an 1's input Li4=0
input to a PLC input module. 2's Input I5=0 {—_8—‘
4's Input I6=1 @ @
B's Input I.7=0 @
DC COM
®
+ 24V DC
1 6 Power Supply
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COMPLEMENT ARITHMETIC

In the 2s complement number system, positive and negative numbers can
be expressed. In this system the MSB of a 2s complement number denotes
the sign. 0 means the number is positive. 1 means the number is
negative. In 2s complement notation, positive numbers are represented
as simple binary numbers with the restriction that the MSB is 0.
Negative numbers are some what different. To obtain the representation

of a negative number, use the following rule:

1. Represent the number as a positive binary number.
2. Complement the number. Change the 1's to 0's, and the 0's to

1's.
3. Add 1.
4. Ignore any carries out of the MSB.
Ex. Given 8-bit words, find the 2s complement of

a) 25 00011001

b) -25 complement +25 11100110

add 1 + 1
=25 = 11100111 )

Note the MSB is 1.

To determine the magnitude of an unknown negative number, take its 2s
complement. The result is a positive number whose magnitude equals

that of the original number.
Ex. What decimal number does 11110100 represent?

This number must be negative because its MSB is 1. Its positive
equivalent is obtained by 2s complementing the given number.

Given number 11110100
Complement 00001011
2Add 1 + 1
00001100
This is the eguivalent of +12. Therefore 11110100 = -12

17
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ADDING 25 COMPLEMENT NUMBERS

If an addition operation is to be performed, the numbers are added
regardles; of their sign. The answer is in 2s complement form with the
correct sign. Any carries out of the MSB are meaningless and should be

ignored.

Ex. Add 19 and -11.

19 is simply 00010011. 00010011
-11 (by complementing) is 11110101 + 11110101
Sum 00001000 = +8

Note that there is a carry out of the MSB that is ignored.

Ex. Add -19 and -11 ~19 11101101 11100010
+ =11 11110101 00011101
o =30 11100010 + I

00011110 30

SUBTRACTION OF BINARY NUMBERS

The 2s complement of the subtrahend (number subtracted) is taken and
added to the minuend. This is subtraction by changing the sign and
As in addition, the signs of the operands and carries out of

adding.
the MSB are ignored.
Ex. 53 - 30 = 23 53 00110101
2s comp of 30 + 11100010
00010111 = 23
Ex. 15 - 8 = 7 15 00001111
2s comp of 8 + 111311000
00000111 = 7

18
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THE OCTAL NUMBER SYSTEM

The octal number system is very important in digital computer work.

The octal number system has a base of eight, meaning that it has eight
possible digits: 0, 1, 2, 3, 4, 5, 6, and 7. Thus, each digit of an
octal number can have any value from 0 to 7. The digit positions in an
octal number have weights as follows:

g4 g3 8?2 gl 8o gl g2 g3 g+ 8’

. [ ]
octal point

Example of an octal number: 512s 64s Eights Ones
Number 1 4 2 35
Weights 83 8? gl g°

OCTAL TO DECIMAL CONVERSION

An octal number can be easily converted to its decimal equivalent by
multiplying each octal digit by its positional weight.

Examples: :
372, =3 x (8%) + 7 x (8Y) + 2 x (8%

=3 X 64 +7 x8 + 2 x1
250y,

2 x (8) + 4 x (8% + 6 x (81
20,7510

24.6,

19
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DECIMAL TO OCTAL CONVERSION

The methods for converting a decimal number to its octal equivalent are
the same as those used to convert from decimal to binary. One method
is using the definition of being an octal number and determining the
number of times a power of 8 can be divided into the decimal number and
what the remainder would be. This process would continue until a value
less than 8 is used for the units column.

Example: Convert the decimal number 266 to an octal number.

4 2 64 8 _1_
64/266 8/ 1/2 4 1 2
256

10

Nloo o|p—a

Remainder Method:

To convert a decimal integer to octal, progressively divide the decimal
number by 8, writing down the remainders after each division. The
remainder represent the digits of the octal number, the first remainder

being the LSD.

Example:
g_g_é = 33 + remainder of 2
38_3 = 4 4+ remainder of |

% = 0 4+ remainder of 4

266,, =

20
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The hexadecimal system uses base 16. Thus, it has 16 possible digit
symbols. It uses the digits 0 through 9 plus the letters A, B, C, D,
E, and F as the 16 digit symbols. The table shows the relationship
between the decimal and hexadecimal symbols. :

Decimal: 0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 15 17 18
Hexidec: 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12

Haxadecimal to Decimal Conversion:

To convert from a hexadecimal number to its equivalent decimal number
remember that the various digit positions in a hex number have weights

that are powers of 16.

Example: 356, = 3 x 16> + 5 x 16! + 6 x 16°
= 768 + 80 + 6
= 854,,
2AF, = 2 x 162 + 10 x 16! + 15 x 16°
= 512 + 160 + 15
= 687,

L4

Note that in the second example the value 10 was substituted for A and
the value 15 for F in the conversion to decimal.

Decimal to Hexadecimal Conversion:

Example: Convert the decimal number 423 to hexadecimal.

~ |-

1 10 7
256/423 16/167 1/7 256 16
256 160 1 A
167 7

Example: Convert the decimal number 423 to hexadecimal using the
Remainder Method.

423 = 26 + R7

16
26 = 1 + R10 = &
16

16 21
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BINARY-OCTAL-HEXADECIMAL CONVERSIONS

The ease with which conversions can be made between octal,
hexadecimal and binary numbers make the octal and hexadecimal
numbers attractive as a "shorthand" means of expressing large
binary numbers. In computer work, binary numbers with many bits
are not uncommon. These binary numbers do not always represent a
numerical quantity but are often some type of code which conveys
nonnumerical information. In computers, binary numbers might
represent 1) actual numerical data; 2) numbers corresponding to a
location (address) in memory; 3) an instruction code; 4) a code
representing alphabetic and other nonnumerical characters; or 5) a
group of bits representing the status of devices internal or
external to the computer. When dealing with a large quantity of
binary numbers of many bits, it is convenient and efficient to
write the numbers in octal or hexadecimal rather than binary.
However, digital circuits and systems work strictly in binary.
Octal and hexadecimal are used as a convenience for the operators

of the system.
OCTAL~-BINARY CONVERSION BY SUBSTITUTION

A method of converting an octal number to its binary equivalent is
to substitute a group of three binary bits for each octal digit.
These substitutions are mode according to the table shown below.

Octal Digit ’ 0 1 2 3 4 5 6 7

Binary Equivalent ) 000 001 010 011 100 101 110 111

Using these conversions, any octal number is converted to binary by
individually converting each digit. For example, the octal number
472 can be converted to binary as follows:

4 7 2
Vool
100 111 010

Octal 472 is equivalent to binary 100111010.

Example: Convert octal 54.31 to binary.

._.
o
O ¢ —
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Converting from binary to octal is simply the reverse of the
foregoing process. The binary digits are grouped into groups of
three on each side of the binary point with zeros added on either
side if needed to complete a group of three. Then each group of
three bits is converted in its octal equivalent.

Example: Convert binary 11010.1011 to octal.

011 010 . 101 100

T
5

-

Lol
3002

Note the 0’s were added on each end to complete the groups of
three. .

Here are several more examples.

10110, = 26,
10011011 = 23.3,
1110111111 = 73.74,

HEXADECIMAL-BINARY CONVERSIONS

The table on the right shows the relationships among
hexadecimal, decimal, and binary numbers. Note that i
each hexadecimal digit represents a group of four Hexadecimal Decimal  Binary

binary digits. The conversions between hexadecimal

and binary are done in exactly the same manner as 0 0 0000
octal and binary except that groups of four bits are 1 1 0001
used. 5 5 0010
3 3 0011
Example: " : 0100
1110100110,=0011101001160 5 5 0101
— e 6 6 0110
3 A 6 7 7 0111
_ 8 8 1000
=3 AL 9 9 1001
9F 2= 9 F % A 10 1010
: M B 11 1011
1001 1111 0010 c 1 |10

= 100111110010, D 13 1
E 14 1110
F 15 1111

23
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HEXADECIMAL-OCTAL CONVERSIONS

A conversion from an octal number to a hexadecimal number can be
done through a binary number.

Example: Convert the octal 346 to hexadecimal.

346 = 011 100 110 = 1110 0110 = ES6
(oct) (binary) (binary) (hex)

Example: Convert the hexadecimal A7.41 to octal.

A7.41 = 1010 0111 . 0100 0001 = 010 100 111 . 010 000 010 = 247.202
(hex) (binary) (binary) . (oct)

Exercise:

1. Convert binary 1111.111 to octal.

2. Convert binary 1111.111 to hexadecimal.
3. Convert octal 371.4 to binary.

4. Convert hexadecimal 7C2.6 to binary.

Answers: '
1. 17.7 (8) 2. F.E (16) 3. 011 111 001.100 (2)

4. 0111 1100 0010.0100 (2)
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Converting between Decimal, Octal and Hexadecimal Systems
Using the Binary Number System

Ex. 1
Convert 271 to an octal number.

271 = 11011, = 011 011, = 33;

Check: 333 =3x8 + 3x1 =24+ 3 =27

Ex. 2
Convert 70.515 to an octal number.

70.5;0 = 1000110.1, = 001 000 110. 100, = 106.45

Check: 10643 = 1x64 + 0x8 + 6x1 + 4x.125 = 70.5¢

Ex. 3
Convert 355 to a decimal number.

35 = 011101, = 16 + 8 + 4 + 1 = 29

Check: 355 = 3x8 + 5x1 =24 + 5 = 29

Ex. 4
Convert 61.4g to a decimal number.

49.59

wn
I

61.45 = 110 001.100, = 32 + 16 + 1 + .

Check: 61.43 = 6x8 +1x1 + 4x% = 49.5)
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Ex. 5

Convert 43 to a hexadecimal number.
430 = 101011, = 0010 1011, = 2By

Check: 2Bis = 2x16 + 11x1 = 32 + 11 = 43y,

Ex. 6
Convert 160.25;; to a hexadecimal number.

160.25;p = 10100000.01, = 1010 0000. 0100, = A0.4

Check: A0.4;6 = 10x16 + 0x1 + 4x1/16 = 160% = 160.25,

_1

“Ex.7
Convert 2C3:5 to a decimal number.

2C346 = 0010 1100 0011, = 512 + 64 + 128 + 2 + 1 = 707y,

Check: 2C3;5 = 2x256 + 12x16 + 3x1 =512 + 192 + 3 =

Ex. 8
Convert 76.Cys to a decimal number.

76.Cis = 0111 0110.1100, = 64 + 32 + 16 + 4 + 2 + .5 + 25

Check: 76.C;s = 7x16 + 6x1 + 12x1/16 = 112 + 6 + % =

70716

= 118.75¢

118.751¢
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Excess-3 Code

The excess-3 code is related to the BCD code and is sometimes used instead because
it possesses advantages in certain operations. The excess-3 code for a decimal
number is obtained in the same manner as BCD except that 3 is added to each

decimal digit before encoding it in binary.

Example: Convert 52y to its excess-3 representation.

5 2
+3 +3 add 3 to each digit
8 5
1000 0101 convert to 4-digit binary

5210 = 1000 0101xs_3

Example: Convert this XS-3 representation to decimal.

1001 0100
9 4

-3 -3
6 1

1001 OIOOxs.g. = 6110

This table lists the BCD and XS-3 code representations for the decimal digits.
Notice that both codes use only 10 of the possible 4-bit code groups. The invalid
code groups for XS-3 are: 0000, 0001, 0010, 1101, 1110, and 1111.

Decimal BCD Excess-3
0 0000 0011
1 0001 0100
2 0010 0101
3 0011 0110
4 0100 0111
5 0101 1000
6 0110 1001
7 0111 1010
8 1000 1011
9 1001 1100
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THE GRAY CODE

The Gray Code belongs to a class of codes called minimum exchange
codes, in which only one bit in the code group changes when going from
one step to the next. The Gray code is an unweighted code, meaning
that the bit positions in the code groups do not have specific weight
assigned to them. Because of this, the Gray code is not suited for
arithmetic operations but finds application in input/output devices and
some types of analog-to-digital convertors.

The table below shows the Gray-code representation for the decimal
numbers 0 through 15, together with the straight binary code.
Examining the Gray code groups for each decimal number, it can be seen
that in going from any one decimal number to the next, only one bit of
the Gray code changes. For example, in going from 3 to 4, the Gray
code changes for 0010 to 0110, with only the second bit from the left
changing. Going form 14 to 15 the Gray code bits change from 1001 to
1000, with only the last bit changing. This is the principal
characteristic of the Gray code. Compare this with the binary code,
where anywhere from one to all of the bits change in going from one

step to the next.

Decimal Binary Code Gray Code
o] Q000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

The Gray code is often used in situations where other codes, such as
binary, might produce erroneous or ambiguous results during those
transitions in which more than one bit of the code is changing. For
instance, using binary code and going from 0111 to 1000 requires that
all four bits change simultaneously. Depending on the device or
circuit that is generating the bits, there may be a significant
difference in the transition times of the different bits. If so, the
transition form 0111 to 1000 could produce one or more intermediate
states. For example, if the most-significant bit changes faster than
the rest, the following transitions will occur:
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The occurrence of 1111 is only momentary but it could conceivably
produce erroneous operation of the elements that are being controlled
by the bits. Obviously, using the Gray code would eliminate this
problem, since only one bit change occurs per transition and no "race"

between bits can occur.
Converting from Binary to Gray Code
Any binary number can be converted to its Gray-code representation as

follows:
1. The first bit of the Gray code is the same as the first bit of the

binary number.

2. The second bit of the Gray code equals the exclusive-OR of the
first and second bits of the binary number; that is, it will be 1
if these binary-code bits are different, 0 if they are the sane.

3. The third Gray-code bit equals the exclusive-OR of the second and
third bits of the binary number, and so on.

Example:
Convert the binary number 10110 to Gray Code.

0 binary
]
]

Converting from Gray to Binarvy

! third binary bit is made a 0 (same as the second binary bit).

To convert from Gray to binary requires the opposite procedure to that

given above.
1. The first binary bit is the same as the first Gray-code bit.

2. If the second Gray bit is 0, the second binary bit is the same as
the first; if the second Gray bit is 1, the second binary bit it

the inverse of the first binary bit.
3. Step 2 1is repeated for each successive bit.

Example: Convert 1101 from Gray to binary:

! Gray
l
!

Ot e
O— O

]
y
| — binary

The first Gray bit is a 1, so the first binary bit is written as a 1.
The second Gray bit is a 1, so the second binary bit is made a 0

(inverse of the first binary bit). The third Gray bit is a 0, so the
The

fourth Gray bit is 1, making the fourth binary bit a 1 (inverse of the
third binary bit.)

29



Dunwoody

IS #8

A method for converting from binary to Gray code is “the add no-carry” method.
In this method, the first bit of the Gray code number is the same as the first bit of
the binary number. The successive bits of the Gray code number are derived by
adding (with no carry) successive bits of the binary number.

Table for “add no-carry” 0+0=0
0+1=1
1+0=1
1 +1=0
Example: Convert 00010111; to Gray code.
00010111, Copy MSB

0001 IIOOGray code

e bkl D O

+ +H 4+ + + 4+ o+

Pt e D e DO
I

To convert from Gray code to binary:
The first bit of the binary is the same as the first bit of the Gray code.
Successive bits of the binary are derived by add no-carry of the last binary bit and

the next Gray code bit.

Example:
Convert 00011100grqy coge to binary.

00011100 Copy MSB 0
0+0 =0

00010111 0+0 =0
1+0 =1
1+1 =0
1+0 =1
0+1 =1y
0+1 =1
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Arithmetic Review Sheet

e

1. A or base ten sys
use as digits, and the pla
2 A or base two
as digits, and the place values are powers of
3. The woxrd is a
4. An
use as digits, and the place values are powers of
5. A
to use as digits,
6. In base sixteen,
7. Any octal digit can be represented by
g.

9.

11.

13

15.

digits.

Convert each number to the indicated
463, = 10 10.
2BC,¢ = 10 12.
211.75,, = . 14.
211.75,, = e 16
11000111.001, = ; 18.

17.

ANy hexadecimal digit can be yepresemnted by U bimary

base.

1A7.E6,, =
D2.7C,, =
111001.01, =

57.34, =

Perform each operation using binary arithmetic.

15.

20.

22.

22.

23.

110.101 + 10.11 =

1101 + 101 + 1112

110.110 - 10.101
101.11 x 1.01 =

100011 + 100 =

31

11000111.001, =

tem of numeration has 10 symkols tfo
ce values are powers of

contraction for "binary digit".

or base eight system of numeration has 8 symbcls to

or base sixteen system of numeration has 16 symbcls
and the place values are powers of

the number twelve 1s represented by the digit

binary digits.

10

system oI numeration has 2 symbols tc use
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Find the two’s complement of each number.

24, 00101101
25. 11011011
26. Convert 7855 to a BCD number.
27.  Convert 63; to an Excess-3 number.
28, Convert 131;to a Gray code number.
KEY
1. decimal,tem T TTTTTAZT 100011, T T

2, binary, two 24, 11010011,
3. bit , 25, 00100101,
4.  octal, eight E 26. 0111 1000
5.  hexadecimal, sixteen 27. 10010110
6. C : 28. 11000010
7. Three . : -
8. Four

9. 307
10. C7.24

11 7004

12. 0001 1010 0111.1110 0110,
13. 323.6g ' '
14. 32237 -
15. D3.Cy¢

- 16. 57.251¢
17. 307.13
18. 101111.0111,
19. 1001.011,
20, 11001,
21. 100.001,
22, 111.0011,
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Douiean algebra differs in a major way [rom ordinary algebra in that
Boolean constants and variables are ailowed to have only two possible values. O or 1.
A Boolean variable is a quantity that may, at different times, be equal to either 0 or

1. The Boolean variables can represent propositions.

A proposition is a declarative sentence that ic either true or false.
False=10 True =1

The Boolean variables are often used to represent the voltage level present on a wire
or at the input-output terminals of a circuit. For exampie, in a certain digital
system the Boclean value ot 0 might be assigned to any voltage in the range from

0 to 0.8 V, while the Boolean value of 1 might be assigned to any voltage in the
range 2 to SV, Thus, Boolean 0 and 1 do not represent actual numbers but instead
represent the truth or falseness of a proposition, or the state of a voltage variable or
what is called its logic level. A voltage in a digital cii~uit is said to be at the logic
level O or the logic level 1, depending on its actual numerical value.

Logic 0 Logic 1

False True
Off On
Low High
No Yes

Open switch Closed switch

Boolean algebra is used to express the effects that various digital circuits
have on logic inputs, and to manipulate logic variables for the purpose of
determining the best method for performing a given circuit function. Letter
symbols will be used to represent logic variables. For example, A might represent a
certain digital circuit input or output, and at any time either A =0 or A =1, if not
one, then the other.

Because only two values are possible, Boolean algebra is relatively easy to
work with as compared to ordinary algebra. In Boolean algebra there are no
fractions, decimals, negative numbers; square roots, and so on. In fact, in Boolean

algebra there are only three basic operations.

1. Logical addition, also called OR addition or simply the OR
operation. The common symbol for this operation is the
plus sign (+).

2. Logical multiplication, also called AND multiplication or simply
the AND operation. The common notation for this operation is
multiplication notation.
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3. Logical complementation or inversion, aiso called the NOT
operation. The common symbol for this operation is the
overbar (7).
Circuit symbol for a two variabie OR gate
. . A 8 =A+3+C
Circuit symbol for a three variable OR gate B H - ¥
C o—
o~ X =AC
—7=— —Circuit symbol for atwo variable AND gate o -

2 G
Circuit symbol for a three variable AND gate ¢ : — X = BCD

Circuit symbol for the NOT circuit A 0——{>®——¢ x=A
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Any logic circuit, no matter how complex, may be described using Boolean
operations previously defined. The OR gate, AND gate, and NOT circuit are the
basic building of digital systems.

Logic circuit with its Boolean expression

In Boclean algebra it will be understood that if an expression contains both
AND or OR operations, the AND operations are performed first, unless there are
parentheses in the expression. Then the operation inside the parentheses is
performed first. This is the same rule that is used in ordinary aigebra to determine

the order of operations.

Ordinary algebra: Parentheses - Multiply - Add
Boolean algebra: Parentheses - AND - OR

Logic circuit whose expression requires parentheses

}x=(A+B)C

NOTE: A+B # A+B and AB # AB

Another use for Boolean algebra is in the simplification of series, parallel, or T

—————

combinations circuits.
T T T - o e [ '
< O -Q o~ -3 [ S — o
j A 8 ¢ i I
= LANE /;\ \r
A\ = : |
T = i e

—i|




Information Sheet for WS #9

Match the number of each figure o the number of the corresponding

equation. Place answers in the table provided.

AT 8T ¢ T

e — o0 O — O
0 T B T
1 —

|
I~

-
"
|

Tamzm — Tamzm
Fig. 1 Fig. 2
"_'—°A o———i e A_T_ C_T_
= Q_.j.I_. U_:l:_ I' -~ Y |
[ wrieRy — = LD Fpymrr— © L L
I BATTERY
Fig. 3 Fic. 4
Equations:
I. L=DA+B+C
IOI. L = ABC+D !
IV. L= (A+B) (C+D) "
il
v
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AND/OR LOGIC

Boolean Algebra will study the logic properties of the circuits from which computers and
all similar digital electronic devices are constructed. Early computers were constructed
out of thousands of electric switches, or relays. When transistors and integrated circuitry
became available, switches gave way to gated networks. The logical properties of
switches and gates are very similar.

D FIU

A switch turns the current in a circuit on and off. A switch is a binary device having rwo
values: on and off.

Switch Light

-

ht

«Q

battery ff off
o}

|
.j!:)m
|

on on

switch

Often circuits have several switches to enable more complex control. In this diagram the
light can be controlled by either one of two switches. Current will flow through either

switch to the light.
Parallel switched circuit
l i Switch 1 Switch 2 Light
E_ I:Q on on on
_—__/ on off on
- oft on on
f ff off
Two paraliel switches off °
Here is a circuit example from the auto world. If a car has an automatic transmission, to
start the car two conditions must be met. The car must be out of gear ( in either neutral or
park) and the key must be turned to “start”. Switches that otk must be o in order for
the circuit to be on are said to be in series. No matter how many switches are linked in
series, all must be on for the circuit to be on.
Series switched circuit
AI_ } ' X Y 1 Circuit
‘ i
a — j
, ‘ - .]C ’ on con ' on
; |
I — | —on——off ———off——- ~ - -
Two series switches off on off
[ oft  off off
f
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AND/OR LOGIC

Digital computers employ high-speed electronic switches known as logic or gate circuits. In these
circuits, two different voltage levels represent the binary symbols 0 and 1. One such circuit, the
AND gate, is so designed that its output terminal will be at the voltage level which represents
binary 1 when all of its input terminals are at the binary 1 level. If any input terminal is at the
binary 0 level, the output will be binary 0. A block diagram of an AND gate is shown below with

a table indicating the output for all combinations of input.

A | 8 |our
0 o} 0 A— .

: out
G I 5—49_
1 o] o _
PopoE o

The AND gate represented above has two input terminals, A and B, but AND gates can be
designed for a greater number of inputs. In every case, however, all inputs must be 1 to produce

a 1 output.

An OR gate is a circuit designed so that its output terminal will be at the voltage level
representing binary 1 when ar least one of its input terminals is at the binary 1 level.
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Assignment: Circle the Boolean equations which are correct for the logic diagram shown.

= A+B+C
AB+C
= ABC
E+F
EF
D+G
DG

D + EF
= ABCEF
ABC +EF
EF + ABC

PR
HOImOmImaQauoo

—— O
—)

THE NOT CONCEPT

The NOT concept is illustrated by the electrical circuit below. Because switch A has a normally
closed contact, actuating the switch will break the circuit and turn off the lamp. The lamp is on
only when the switch is NOT actuated. This is expressed by the Boolean equation L = A
(sometimes written L = A’) which is read "L equals NOT A."

A
1 o
l LAMP

-T- BATTERY (=T

Electronic circuits which perform the NOT function are designed so that the output terminal is at
the voltage level that represents binary 1 when the input terminal is at the binary 0 level. Also,
the output level is binary 0 when the input level is binary 1. Such circuits are also known as
inverters. Some commonly used schematic symbols are shown below.
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Assignment: Match the number of the equation to the number of the corresponding diagram.

Fig. 1

[
b
77

Fig. 2 Fig.3 Fig. 4 Fig. 5 ’
Equations:
I L = ABC
II L=A+B+C
n. L= A_B-C_
IV. L=A+B+C
V. L = ABC
EQUATION FIGURE
I
I
T
v
VvV
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THE TRUTH TABLE

The variables of a Boolean expression can occur in either inverted or noninvertec forms, e.g., A
or A. The binary symbols 1 and 0 are employed to represent the two forms of the variable.

Thus, if A = 1, then A = 0.

The truth table is a tabulation of the value of a Boolean expression for all possible combinations
of its variables. A truth table for the expression AB + C is shown below. As there are three
variables (A, B, and C) there are eight (2%) possible combinations of these variables. The truth
table therefore has eight rows. For each combination of truth values of variables, the value of
the expression AB + C is given in the right-hand column. Note that the value of the expression
is 1 whenever both A AND B are 1, or whenever C is 1.

TRUTH TABLE
o A ’ B C ’ AB + C }
0 0 0 0 A ‘ B o ABC
’ ! ’ ° 0 0 1 0 |
0 1 1 1 |
0 1 0 0
1 0 0 0 . ) . 5
1 0 1 1 ) ; ; ; I
![ 1 1 0 1 W . ; ) . ‘1
|1 1 1 1 J ) ) N 0 {
M 1 1 1 0 J

Another truth table, for the expression ABC, is shown. Note that the value of the expression is 1
. onlywhen A = land B = 0and C = L
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Examples:
A/B|C| A+BC

1

A+B

0
1

A

ABC
0

ABC

c
0

C

1

1

1

1

B
0
0
1
1
0
0
1
1

0
0
1
1
0
0
1
1

A

AlB|C| AB+BC

1

1
1
0

Ofle~]lo| v
I . .
0011“
S S o
|
|
!
{
|
] o
ol T T ]
o !
tlolole|lvjolo|l«lo
m
1<
Ololvlo|lv|o|l-]|ol«
S =
Djoloiv|+|o|lo|«|«
<|lolololo|v|v|w]|

A+C

1

1

1

0
1

1

0
0
1
1
0
0
1

1

B|C

0
0
1
1
0
0
1

1

Key:

A+cC
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Theorems of Boolean algebra, numbered for reference, are shown below. Also
shown are block diagrams (figures) numbered to correspond to the theorems. Theorem
2, for example, is clarified by Fig. 2. Because an oRr circuit will produce a | output when
at least one of its inputs is logical 1, the output of Fig. 2 always will be a | (whether
terminal A is | or 0). This constant output is represented by the | in the theorem:
A+A=1.

Fig. 5 clarifies theorem 5. Since a constant 1 is applied to one of the terminals of the
AND circuit, the output always will be the same as the input to terminal A. Hence
Al =A.

(1) A+A=A (5) Ac1=A (9) 1+0=1
(2) A+A=1 (6) A-0=0 (10) 1+1=1
(3) A+1=1 (7) A-A=A (11) 1:0=0
(4) A+0=A (8) AtA=0 (12) 11 =1

0 1

Fig. 1 Fig. 4 Fig. 7 Fig. 10

A— ! 1—
1 0— v —

Fig. 3 Fig. 6 Fig. 9 Fig. 12

The above theorems often permit simplification of Boolean expressions.

Example: B+ B +0=1+0 (by theorem 2)
o =1 (by theorem 9)
1. 1+1+0 ' 6. A+0+A+0
2. 1-1-A 7. A+B+1
3. M-M-1 8. 1(E+ E)
4 X Q1 9 H+H+H+H
5. C-1+DD 10. 1-0-A
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Examples
1. A(AB+Q) = 8. A+0)B+1)=
AAB +AC = Al =
AB+AC A
2. A(AB +B) = 9. (AB)(AB) =
AAB+AB = AABB =
AB+AB = AD =
AB 0
3. A(AB +B) = 10. AC + AC =
AAB +AB = AC
0B+ AB =
0+AB = -
AB 1.  AA +BC +BB +
: ~ A+BC+B+8B
A+BC+1-=
1
4. A+ B+ C + =
A+B+B+ _
A+1+C= 12. (A + BAB =
1 AAB + BAB =
AB + A0 =
AB + 0 =
_ AB
5. AB + B) =
Al = -
A 13. 1+B+B-=
1+1=
1
6. AB +1 =
1
14, AB(A + B) =
ABA + ABB =
7 A +BB BO + A0 =
A+0= 0+ 0=
A 0
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BASIC LAWS OF BOOLEAN ALGEBRA

Symbols used: A, B inputs
AB: A and B

A+B: AorB
A: not A
IDENTITY: A=2 A=2
REDUNDANCY : AA = 2 A+A=a
COMMUTATIVE: AB = BA A+B=B+A
ASSOCIATIVE: A(BC) = ABC A+ (B+C) =A+B+c¢C
DOUBLE NEGATIVE: A=2 '
' COMPLEMENTARY: AR = 0 A+E=1
INTERSECTION: Al = A A0 = 0
UNION: A+ 1 =1 A+0=2A
DE MORGAN: AB = A + B A+ B = AB
DISTRIBUTIVE: A(B + C) = AB + AC A+ BC=(A+B)(A + C)
ABSORPTION: A+ AB =2

I

»
+
o

COMMON IDENTITIES: A + AB
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Examples:
1. AB + ABC + AB) =
AB + ABC + AAB = Distributive
AB + ABC + AB = Redundant A
AB + ABC = Redundant AB
AB Absorption
2, A+ AB + AC + ABC =
A Absorption
3. A + AB + ABC + AB =
A+ AB = Absorption
A+ B Common Identity
4. A + BC + ABC + ABC =
A + BC + ABC = Absorption
A + BC + BC = Common Identity
A + BC Redundant
5. A+ ABC + 0 =
A + ABC = Union
A Absorption
6. (A+B)A +C) =
AA + AC + AB + BC = Foil
A+ AC+ AB + BC = Redundant
A + BC Absorption
7. A+ 1B+ 0)(C + O)B + C) =

MB)D)B + C) =
BB + C) =

BB +BC =

B + BC =

46

Union, Complement
Intersection
Distribute
Redundant
Absorption
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KARNAUGH MAPS
A Karnaugh Map is a graphical means for simplifying Boolean expressions.
With these maps, the redundant terms in an expression can be quickly eliminated.

Boolean expressions can be written in one of two ways. The minterm form consists
of the ORing of single terms or And functions.

Example: ABC + ABD + BC + E

The maxterm form consists of the ANDing of single terms or Or functions.

Example: (A+C)B+D +E)A

The rules of Boolean Algebra permit us to convert from one form to the other.
The distributive lay and DeMorgan’s Theorem are especially helpful in these

conversions.

When terms are to be plotted on a Karnaugh Map, thev should be in the Minterm
form. '

o
o
co

Plot of AC + BC + AD + BD on a Karnaugh Map.

Plot of AC Plot of BC Plot of AD Plot of BD Complete Map
A8 AB AB AB AB AB AB AB AB AB AB AB AE AB AB AB AB AB AB AB
o ] co o
o) &o > o rd &o N
< o X co >< of DX co X’
cb cb cb cb ><
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MAPPING
A A 2 VARIABLE DIAGRAM
B 1 Variable Term = 2 Squares Occupied

2 Variable Term =1 Square Occupied

3 VARIABLE DIAGRAM

AB AB AB AB
1 Variable Term = 4 Squares Occupied
C 2 Variable Term = 2 Squares Occupied

3 Variable Term = 1 Square Occupied

5 4 VARIABLE DIAGRAM

p-g)
w
b3}
Q
>
w
p -
o

cD 1 Variable Term = 8 Squares Occupied
2 Variable Term = 4 Squares Occupied

C 3 Variable Term = 2 Squares Occupied

4 Variable Term = 1 Square Occupied

Expression to be plotted must be in Minterm form.
Parantheses removed — Written in OR gates

P. 48
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Examples: Map the following Boolean expressions.

. A 2. A 3. A
_ AB AB AB AB
A A L _

| AE AB AB AB B ><><

é _

‘ ¢ >< \ CD >\/

B c

co rd
- Ve
cB ><

4. AB 5. BC 6. AB

_ AB AB AB AB
A A o . N
_ AB AB AB AB cD
: 6 X
cD
B
C cD
ch
7. AB+AB < 8.  ABC 9. ABCD+ ABCD +ABCD
A A AB AB AB AB
Bl X AB AB AB AB cD
: ¢ &p ><L
C cD
cD ></
p N\
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Examples: Read the following maps.

10. A 11. B 12. AC

- | AB AB AB AB

A8, AB AB /AB -
_ ch
; [ ’
o

%i PN

ch K )

— w
13. 1 ‘ 14. AB+AC 15. A+B

(% c -
A C o)
cD
cD
16. AB 17.  ABC 18. ABCD + ABCD
A /Arj AB_AB AB B i5 AB AB AB
B c ( &
B | C ) T
B ch
- D} - A
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Boolean expressions and equations often can be simplified by removing common
factors and applying the basic theorems

Example: Simplify the expression A + AB.

A+ AB = A(1 +B) (removing A as a common factor)
=A(1) (because 1 + B = 1)

= A (because A-1 = A)

‘Example: Simplify the expression AB + AB

AB + AB = A(B + B) (removing A from first two terms)
=A(l) . (because B + B = 1)

= A (because Al =A)

AB#AB

It-is important to note that an expression With a single NOT bar extending over sev-
eral variables is not equal to the same expression with individual NOT bars over the vari-
ables. Thus AB is not the same as AB. That they are not equal is apparent from the
truth table below.

AB

P>
[o2]
[3+]

A
0
0
1
1

B
0
1
0
1

Ql O] —

L

A1 appears in the AB column only when A AND .B are both 1. Because AB is the
exact opposite (negation) of AB, a 1 appears in the AB column wherever there is a 0 in
the AB column, i.e., if AB = 1, then AB = 0. The AB column shows a 1 only when A =
0 aND B = 0. Comparison of the AB and the AR columns reveals their lack of equival-
ence.

B B AB
A | A
- AlX

P

>
RIS

AB AB = A + B
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i. A is a declarative sentence that is either true or
false, but not both.

2. "And", "or" and "not" are called .

3. In Boolean algebra, the notation corresponds to

n andll .

4. In Boolean algebra; the notation corresponds to
" Or" .

5. In Boolean algebra, the notation corresponds to
"true®.

6. In Boolean algebra, the notation corresponds to
"false".

7. Two propositions are if they have
the same truth values for every combination of truth values

for the simple propositions used as components.

8. Construct a truth table for: AB + C

9. Construct a truth table for: A + B

10. Construct a truth table for A + BC

11. Evaluate AB + C if A=1, B=0and C = 1.
12. Evaluate AB + BC if A =0, B=1, and C = 1.
Simplify the following Boolean statements.

13. AB(A + B)

14. (A _+ A)B
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Simplify the following Boolean expressions.
15. A+ AB + 1
16. A(l + A)

17. (B + 1)(A + 0)

18. (A + B) (AC + B) (C + B)
19. AB + A + B

20. AB + ABD + AB + CD

Draw a circuit to illustrate each Boolean expression.

21. BC + BC

AN

22. (B + C) (B + ¢)

23. Simplify the circuit (A + BC)B.

24. Simplify the circuit (AB + C)aB.
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1. proposition/statement
2. connectives
3. .
4. +
5. 1
6. o}
7. logically equivalent
8. fame #MeF
8. s 0 0 H
6 6 1 l!l
+]
S. 11 o
1 ¢ 6 i
10. 1o
11 1 r
12. 0 9. A3 A+E o
o 0 1
]
13 AB 1o 1
11! 1
14, B
10. N ¢ ;X2+38
15. 1 00 0 1
e 0 1. 1
¢ 1 Q 1
1 1
18 A eil
1 ¢ 1 0
17. A 11 ¢ o
111 -]
18 BC
19 2+B
20 A+ D




